Interacting extension of the Aubry–André model

Francesca Pietracaprina

Statistical Physics PhD Course

14/03/2013
Summary

○ Introduction: localization and Aubry–André model
○ Interacting extension
 - the problem and the numerical approximation
 - numerical results: behaviour of a few quantities
 - detecting the MBL transition
 - tentative phase diagram
○ Conclusions
Let's consider systems with on site disorder.

Localization:

one particle:
localized wavefunctions (exponentially decaying envelope)

many particles:
breaking of ergodicity (local quantities have localized correlators)

Representative model: Anderson model (fermions)

\[
H = \sum_{\alpha} \xi_{\alpha} c_{\alpha}^{\dagger} c_{\alpha} - t \sum_{\{\alpha,\beta\}} (c_{\beta}^{\dagger} c_{\alpha} + c_{\alpha}^{\dagger} c_{\beta})
\]

- \(\xi_{\alpha}\): on site random energies
- \(t\): hopping
Introduction

Let’s consider systems with on site disorder.

Localization:

<table>
<thead>
<tr>
<th>one particle:</th>
<th>many particles:</th>
</tr>
</thead>
<tbody>
<tr>
<td>localized wavefunctions</td>
<td>breaking of ergodicity</td>
</tr>
<tr>
<td>(exponentially decaying envelope)</td>
<td>(local quantities have localized correlators)</td>
</tr>
</tbody>
</table>

representative model: Anderson model (fermions)

\[
H = \sum_{\alpha} \xi_{\alpha} c_{\alpha}^{\dagger} c_{\alpha} - t \sum_{\{\alpha,\beta\}} (c_{\beta}^{\dagger} c_{\alpha} + c_{\alpha}^{\dagger} c_{\beta})
\]

- on site random energies
- hopping

Francesca Pietracaprina

Interacting AA model
disorder is not necessary: 1D Aubry–André (AA) model

\[H = \sum_{i=0}^{L-1} \left[\xi_i c_i^\dagger c_i - t (c_i^\dagger c_{i+1} + c_{i+1}^\dagger c_i) \right] \]

\[\xi_i = W \cos(2\pi ki + \delta), \quad k : \text{quasiperiodic potential} \]

peculiarity: no mobility edge; transition point at \(\frac{t}{W} = \frac{1}{2} \)
Let’s now consider many particles and turn on interaction.

\[H = \sum_{i=0}^{L-1} \left[\xi_i n_i + t(c_i^\dagger c_{i+1} + c_{i+1}^\dagger c_i) + \Delta n_i n_{i+1} \right] \]

\[\xi_i = W \cos(2\pi k_i + \delta) \] (as in the AA model)

What happens with regards to localization?

S. Iyer, G. Refael, V. Oganesyan, D. Huse

Notation: \(g \equiv t/W, \ u \equiv \Delta/W, \) transition for \(g = \frac{1}{2} \) (at \(\Delta = 0 \))
Many body localization

Let’s now consider many particles and turn on interaction.

\[H = \sum_{i=0}^{L-1} \left[\xi_i n_i + t (c_i^\dagger c_{i+1} + c_{i+1}^\dagger c_i) + \Delta n_i n_{i+1} \right] \]

\[\xi_i = W \cos(2\pi k_i + \delta) \] (as in the AA model)

What happens with regards to localization?

Many-Body Localization in a Quasiperiodic System,

S. Iyer, G. Refael, V. Oganesyan, D. Huse

Notation: \(g \equiv t/W, u \equiv \Delta/W \), transition for \(g = \frac{1}{2} \) (at \(\Delta = 0 \))
The approach:
Take a random element of the configurations space and let it evolve. Does the system thermalize?

End result:
the interacting model has a MBL transition. Interactions favours the delocalized phase.

Numerically simpler: sequentially hop on each bond

\[H_m = H_{\text{on site}} + H_{\text{int}} + Lt(c_{m+1}^\dagger c_m + c_m^\dagger c_{m+1}) \]

\[U(\Delta t) = \prod_{m=0}^{L-1} U_m(\Delta t), \quad \text{with } U_m(\Delta t) = \exp\left(-\frac{iH_m\Delta t}{L} \right) \]

It’s a different model: introduces new transitions; \(\Delta t \) must be small, or else qualitatively altered dynamics!
The approach:
Take a random element of the configurations space and let it evolve. Does the system thermalize?

End result:
the interacting model has a MBL transition. Interactions favours the delocalized phase.

Numerically simpler: sequentially hop on each bond

\[H_m = H_{\text{on site}} + H_{\text{int}} + L t \left(c_m^\dagger c_{m+1} + c_{m+1}^\dagger c_m \right) \]

\[U(\Delta t) = \prod_{m=0}^{L-1} U_m(\Delta t), \quad \text{with } U_m(\Delta t) = \exp \left(-\frac{i H_m \Delta t}{L} \right) \]

It’s a different model: introduces new transitions; \(\Delta t \) must be small, or else qualitatively altered dynamics!
Notes on the numerics:

- Free boundary conditions: no hopping over the boundary
- Quasiperiodic potential $W \cos(2\pi ki + \delta)$ with $k = \phi^{-1}$, δ RV
- Initial configuration: random in half filling configuration space

Lattice sizes are (empirically) chosen to minimize finite size effects: $L = 8 \div 20$, even.

Quantities to look at:

- temporal autocorrelator and its average (over sites and samples)
 \[\chi_j(t) = (2\langle n_j \rangle(t) - 1)(2\langle n_j \rangle(0) - 1) \]
- participation ratio (V is the size of configuration space)
 \[\eta = \frac{1}{[IPR/V]}, \quad IPR = \langle \sum_c |\psi_c|^4 \rangle_{\text{smp}} \]
- Rényi entanglement entropy
 \[S_2(t, L) = \langle -\log_2 \left(\text{tr}_A [\rho_A^2(t)] \right) \rangle_{\text{smp}} \]
Notes on the numerics:

- Free boundary conditions: no hopping over the boundary
- Quasiperiodic potential $W \cos(2\pi ki + \delta)$ with $k = \phi^{-1}$, δ RV
- Initial configuration: random in half filling configuration space

Lattice sizes are (empirically) chosen to minimize finite size effects: $L = 8 \div 20$, even.

Quantities to look at:

- temporal autocorrelator and its average (over sites and samples)
 $$\chi_j(t) = (2\langle n_j(t) \rangle - 1)(2\langle n_j(0) \rangle - 1)$$
- participation ratio (V is the size of configuration space)
 $$\eta = \frac{1}{[IPR/V]}, \quad IPR = \langle \sum_c |\psi_c|^4 \rangle_{smp}$$
- Rényi entanglement entropy
 $$S_2(t, L) = \langle -\log_2 \left(\text{tr}_A \left[\rho_A^2(t) \right] \right) \rangle_{smp}$$
Temporal autocorrelator

Different regimes:

\[\chi(t, L) \text{ constant} \]

\[\chi(t, L) \text{ power law, saturation} \]

Crossover between the two regimes:

The transition happens when \(\chi(t_f, L) \) shows dependence on \(L \). This is a lower bound (due to finite size of lattice).
Participation ratio

\[IPR = \langle \sum_c |\psi_c(t_f)|^4 \rangle_{\text{smp}} \]

for many particles \(IPR \) always decays exponentially with \(L \):
- localized phase \(\rightarrow \) slower than \(V^{-1} \)
- delocalized phase \(\rightarrow \sim V^{-1} \)

Normalized participation ratio \(\eta(t_f, L) = \frac{1}{V IPR(t_f, L)} \propto e^{-\kappa L} \)

Note: the non-interacting AA model has an extended phase which is not fully ergodic: NPR still depends on \(L \).

\(L \): system size; \(V \): size of the configurations space
Entanglement Entropy

Check if a subsystem is a good heat bath. Take Rényi entropy (simpler to compute numerically)

A: sites $0, 1, \ldots, L/2 - 1$; \hspace{1cm} B: sites $L/2, \ldots, L - 1$

$$S_2(t, L) = \langle - \log_2 \left(\text{tr}_A [\rho_A^2(t)] \right) \rangle_{\text{smp}}, \hspace{0.5cm} \rho_A(t) = \text{tr}_B [\rho(t)]$$

Entanglement for

- localized phase: interactions over the boundary AB independent of L in the non-interacting case extensive, but subthermal in the interacting case
- extended phase: $\propto L$, \rightarrow thermal value (finite size: superextensive)
\[S_2(t_*, L) = mL - S_d \]

\[S_d = 1.15 \div 1.3 \text{ at high } g \]
Detecting the transition

To get an estimate of the transition point (without finite size scaling)

- autocorrelator: provides a lower bound (due to L finite, $L < \xi$)
- transition point $\rightarrow g$: size dependence begins.
- region dominated by finite size effects has unphysical values (near transition)
 - exponent of normalized participation ratio:
 - transition point $\rightarrow g$: minimal value of κ
 - entropy:
 - transition point $\rightarrow g$: maximum value of m

\[\eta \propto e^{-\kappa L} \]

\[S_2 = mL - S_d \]
Phase diagram

Many-body ergodic

Many-body localized

AA localized

AA extended

Francesca Pietracaprina
Interacting AA model
Conclusion

Interacting AA model:
- peculiar 1D model
- a MBL transition is spotted
- behaviour of some quantities in the MBL phase

Thank you for your attention

References:
 Many-Body Localization in a Quasiperiodic System
2. Thouless, Niu
 Wavefunction scaling in a quasiperiodic potential
3. Tang, Kohmoto
 Global scaling properties of the spectrum for a quasiperiodic Schroedinger equation
 Physical Review B 34, 2041 (1986)